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ABSTRACT

The presence of a thin non-homogeneous layer at the inter-

face of an elastic and a fluid medium can alter the energy exchange

between the two media. In this report the effect of the transition

layer upon the propagation of one-dimensional longitudinal waves is

analyzed. The motion of the lower boundary of the elastic layer is

assumed known and the energy radiation into the fluid is obtained...
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1- INTRODUCTION~

In a previous report it has been shown that under certain

sets of conditions, a thin non-homogeneous viscoelastic layer

interposed between an elastic solid and a viscous fluid can change

the resonance characteristics of the elastic layer. The interest

of this report is to analyze the same system studied in reference 1

acting under the influence of a longitudinal one-dimensional distur-

bance (Fig. 1). The longitudinal disturbance is created at the lower

boundary of the elastic layer. Coatings and transition layers of

interest will have densities close to that of the surrounding fluid

(water).

The transition layer can be considered to be either a physical

coating interposed between the elastic layer and the fluid or it can

be assumed to have an effective thickness with properties related to

the mean location of the solid-fluid interface. These properties

can be obtained by averaging the location of the interface as a

function of both time and space.



II - ANALYSIS

II-1 - Derivation of Governing Equations

The general governing equations for a plane strain motion of

a generalized medium are
2

DvI  aT1 3T (1)P - 5 - --t +--y-

Dv2  aT21  aT2 2

P 5 - ax-  ay (2)

avI  av2D p + p ( - + 2 0 (3)
Dt + ax a-)=

where vI and v2 are the velocities in the x and the y direction

respectively. The material derivative can be written in terms of

vI and v2 :

D a aa(4
D =  +  Vl i + v2 (4)

The stresses T.. are related to either the strain or the rate of13J

change of the strain depending upon whether the medium is a solid

or a fluid. The general values of the stresses are given by

=2G aul1 au 2(5

lsolid 2-v - T V ] (5)

4 V1  2 av2
llIfluid -P I [ x (6)

G[au I  au2, 7
121 solid G au a-i-- (a)

avI  av2_

121fluid y-(
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T 3G [ Ul* au 2221solid 1-2v - (-5- (9)

T221 2flui -p + U[- ; + av 2  (10)
fluid

where u. are the particle displacements in the i direction. For

one-dimensional (i.e. 1- = 0), longitudinal (i.e. u1 = v1 = 0),
-ixt

steady-state (i.e. e time dependence) motion with zero mean

flow field the governing equations reduce to

dv2  (11)

2  - iv 2] - (22)

d (Pv2 ) - iWP = 0 (12)

with du

2 2 2 (13)22 1 -2v dy (a
solid

T iPdu2

122 Ifluid -pd (14)

For frequencies below ultrasonics, the viscosity term in equation

(14) can be neglected. Linearizing equations (11) and (12) will

reduce the equations to:

d du 2 2
-(K(y) 2T) + u 2 = 0 • (15)

K(y) is the generalized stress-strain coefficient and is given by

3(1-v) k solid

K(y) - (16)
C 2 fluid

f
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k is the bulk modulus of the solid. The longitudinal wave speed

of the solid c5  is related to the bulk modulus k by

2 3k (1-v) (17)Cs T TVT "

For a non-homogeneous transition layer with bulk properties varying

from that of the solid to that of the fluid, the generalized non-

dimensional stress-strain coefficient may be defined by

2
H(y) = K(y)/c 2  (18)(is

Thus

H(y) = R + (l-R) exp [-y/9z , (19)

where R is the square of the ratio of the longitudinal velocity

of the fluid to that of the elastic solid,

R =( )2 (20)

The values of R for different elastic materials immersed in water

are shown in Table 1.

Material R

Steel/Aluminum 0.05

Brass 0.1

Hard Rubber 0.4

pc Rubber 1.0

Very Soft Rubber 10.0

Table 1 - Values of the square of the ratio

of the wave speed in water to that

in the solid
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The magnitudes of R of interest are thus seen to vary from 0.05

for very hard material to about 10 for a rubber-like material

interlaced with air voids.

The values of n of Eq. (19) are related to the thickness

of the transition layer. Small values of n correspond to a

thick layer with decreasing thickness as n increases. In the

limit as n-- the transition layer disappears and the classic

solid-fluid interface is recovered. For y<< and for any value

of n one obtaines the stress-strain coefficient for the elastic

solid while for y>>Z one recovers the coefficient for the fluid.

Fig. 2 shows the effectof different values of n upon the thickness

of the transition layer and upon the characteristics of the gener-

alized stress-strain coefficient within the layer.

The differential equation to be solved is

d du2  2 = 0 (21)(a ) + e1 2

where @1 is the wavenumber in the solid given by

cs  . (22)

The boundary conditions for Eq. (21) are split and are

u2 (0) = 1 (23)

lim u 2 (y) -- outgoing wave . (24)

Note that in the two limits of y<<Z and y>5Z one otains

u2 + el u2 = 0 y<<t , (25)

+ r u2 = 0 y>> , (26)
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where r is the fluid wavenumber and is given by

c.&E = /R (27)
C f 1

For fixed fluid conditions, increasing r corresponds to higher
frequencies and to thicker solids, while increasing R corresponds

to softer solids. Table 2 shows values of r for cases of interest.

f10 cm 1 cm 1 mm
-4-5-

1 Hz 4x10 4x10 5  4x10 6

-3-4-
10 HZ 4x10 4x10 4  4x1Q 5

10 2Hz 4x10 - 2  4x10- 3  4x10- 4

10 3Hz 0.4 4x10- 2  4x10- 3

10 4Hz 4 0.4 4x10- 2

Table 2 - Values of r for different Z and frequencies.

As one moves away from the transition layer into the fluid, the

validity of Eq. 24 increases. The outer boundary condition is

then replaced by a comparison of the numerical solution of Eq. 21

with the outgoing wave solution of Eq. 26;

u2 = Ce
i y . (28)

The numerical integration of Eq. 21 is obtained by a Runge-

Kutta procedure. The procedure requires an initial value for

du2  at the inner wall; a guess is initially made. The slope at

the wall is modified until the numerical solution contains only

outgoing waves (i.e. agrees with Eq. 28).
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11-2 - Transmission of Longitudinal Waves Through Two Media

In the limit as n--, the transition layer disappears and one

obtains the problem of propagation of longitudinal waves from one

elastic medium (solid) into another (fluid)(Fig. 3). This limiting

solution can be obtained in analytic form and will be used to help

understand the numerical results for the transition layer cases.

The propagation of steady-state small vibrations is governed

by d2

+cs  2 - y<Z (29)
dy2

d 2 u 2

2 + c2  2 - 0 y>z (30)
pw2  £ dy 2

The boundary conditions for these two equations are: (1) unit

displacement at lower boundary of solid, (2) equality of displace-

ment at y=£ (3) equality of stresses at y=Z and (4) only outgoing

waves permitted for y>£. These four conditions can be expressed

by

u2 (0) = 1 , (31)

u 2 () solid = u 2 () Ifluid (32)

2 du 2 (M) 2 du 2 (M)J
s dy solid =cfdy 'fluid , (33)

u2(Y) id = C eiry (34)

The solution to Eqs. 29-34 can be shown to he given by

u(Y) = cos[rR (y-X)/k]- iR sin[fR (Y-)/] y<Z,(35)

2  cos(rR ) - iR sin(rR )

1A =-r



u2 (Y) = exp[ir(y-)/.] y>P, (36)
cos(rR) - i R sinR

The magnitude of the fluid particle displacement u2 is then

given by
u2(Y) = [1 + (R-l) sin 2(rR H (37)

For values of R less than unity (i.e. very rigid solids) the

particle displacement will be magnified in going from the solid

into the fluid. The magnification will be a maximum for

rR (+2),n = 0,1,2,3,4....... (38)

This condition corresponds to

- = 1+2n n = 0,1,2,3,4 ..... . (39)
As 4

Eq. (39) is the condition required for acoustic resonance of a
.3

closed-open pipe .

For very soft coatings, the value of R will be much greater

than unity and the fluid particle displacement will always be

less than the wall displacement. The magnitude of the fluid

particle displacement will he minimized for

rR =( +2n ) 7T(38-a)

The same condition (Eq. 38) will thus create a fluid particle

displacement enhancement and reduction for very rigid and very

soft coatings respectively.

Note that for both conditions (very rigid or very soft coatings)

for values of

rR = n n = 0,1,2,3 .... (40)
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the fluid particle will have exactly the same displacement magni-

tude as the solid particles; effect of interface is therefore

negligible.

In the analysis discussed in this section, for simplicity,

it has been assumed that the fluid and the solid densities are

equal. Changes in the density ratio will change the quantitative

results but will not alter the qualitative aspect discussed above.

9I

0q



III - DISCUSSION OF RESULTS

Figure 4 shows the particle displacement distribution for a

particular transition layer thickness (n=8) and for a particular

coating material (R=l0), as a function of distance from the lower

boundary for different F's (i.e. different frequencies). As

expected, at the lower frequencies the displacement remains unaltered
* in going from the solid to the fluid (i.e. the longitudinal wave

* does not see the discontinuity). As the frequency is increased, a

more diverse structure in the displacement signature is observed.
At a particular frequency, a resonance-type distribution is observed;

as frequency is increased further the displacement distribution

becomes more uniformagain. This type of behavior is very similar to

the closed-pipe resonance phenomena discussed previously in the no-

transition layer model. Fig. 5 shows the normal stress distribution

for the same condition as Fig. 4. The stress distribution as a

* function of frequency is seen to reflect the resonance phenomena

discussed previously.

Figs. 6 and 7 present the particle displacement and the stress

distribution at a particular frequency (i.e. P=l) for different

coatings. The coating material bulk moduli vary from that corres-

pondingto very soft and very rigid rubber. Figs. 8 and 9 are

similar results at a much higher frequency (i.e. r= 10). No

phenomelogical differences exist between these two cases; only the

detailed structure of the individual distribution differ.

The effort of this report has been toward trying to understand

the effect of the non-homogeneous transition upon the energy

exchange between the solid and the fluid. In order to simplify

the analysis, it has been assumed that no longitudinal damping is

present in either the elastic layer or the transition layer; since

this analysis deals only with longitudinal displacements and stresses,

any damping in the shearing modes will not effect these results. In

addition, the density of the solid and of the transition layer has

been assumed to equal the density of water; this is a very reasonable

assumption for the coating materials of interest.
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iv- CONCLUSIONS

The effect of a small transition layer, interposed between

a compliant surface and the fluid, on the propagation of the

longitudinal waves generated at the lower boundary of the coating

has been studied. The transition layer has been assumed to be

a non-homogeneous layer with properties ranging from that of the

solid at the lower end to that of the fluid at the upper end. At

the lower frequencies the coating disturbances have very long wave-

lengths such that not only is the transition layer transparent to

these disturbances, but the coating itself is also transparent.

The presence of the solid-fluid interface becomes noticeable at

the higher frequencies where the disturbance wavelength h-ecomes

a noticeable fraction of the coating thickness. At the higher

frequencies, the coating can exhibit resonance conditions similar

to a closed-closed or a closed-open pipe. For fluid wave speeds

greater than the solid wave speed, a closed-closed condition can

be obtained while for a fluid wave speed less than the solid wave

speed, a closed-open pipe resonanine is obtained.

The particle displacement overshoot profile depends not only

on the frequency of excitation, but also on the ratio of the coating

to fluid properties. The magnitude of the overshoot due to the

presence of the transition layer, for the conditions considered in

this report, is not as predominant as in the case of the coating

shear wave study. The stress distribution within the coating and

the transition layer is monotonic and its general characteristics

are not very sensitive to the conditions considered.
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APPENDIX

Enclosed are additional figures of particle displacement and

shear stress distribution.
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